Category: Info

Importance of Structured Cabling System

Organizations that have various branches situated at different countries and cities of the world, or companies with numerous departments with huge number of employees, require a proper and efficient networking system that connects to all their computers, faxes, printers, scanners etc. If the networking system is not properly installed it can create havoc in the organization. But with well-organized structured cabling system, all this has become very simple. To make organization’s networking system smooth and long-lasting for years, companies install unique, quality high-speed cable at any cost.

In this era of advanced technology, structured cabling is perhaps thebest and most cost-effective solution to a great and efficient networking system. There are many firms round the globe that provides customized service cables and solutions and are specialists in manufacturing;

  • Structured Cabling
  • Data Cabling
  • Networking Cabling
  • Voice Cabling
  • CAT Cable
  • Cable and Fiber Optics Installation and
  • Network Wiring

The networking services are affordable, sustainable and dynamic tothe changes that your business might experience with profitable growth and expansion. Nowadays mostly all business firms’ works seriously on installation of advance ethernet network cable, phone wiring, premise wiring for secure and uninterrupted flow of data and information. They have a dedicated group of engineers who look after the type of cablebest suited for the infrastructure and then plan and design networking cabling solutions to meet the specific business needs.

Today, the traditional structured cabling system is the foremost priority of all types of business enterprises. Companies even follow afew important guidelines before installing network cabling structurelike:

  • Fibre cable, Multi-mode and Single mode for smooth long distance calls and interactions that is interference free
  • Ethernet network cable for office buildings, call centers, data centers, ware houses and small offices
  • High quality Telco grade network wiring, patch panels and jacks

There are many firms in Malaysia offering quality network cables that are durable and long-lasting for years. They offer unique and flexible structured cabling that are adjustable to frequent re-locations, any kind of changes in networking or infrastructure without any workflow disruptions. The efficient network system speeds up data transfer immensely and reduces costs to a large extent.

Whether it is a pre-occupied office or an empty place, whether a large construction site or a high-rise building; whatever the situation or wherever the location; the advance and superior cabling networking system is the only answer for speedy and continuous data flow.

Is there a minimum length?

For Category 5e and 6, there is no minimum length requirement. ANSI/TIA/EIA-568-B.2-1 in Annex K does give a warning about reflected FEXT on shorter links with minimally compliant components. The obvious solution is not to purchase minimally compliant components. In the early days of Cat 6 when vendors were struggling to do better than marginally compliant, short links were an issue. Today, this is not an issue if you stay with a main stream vendor.

Within this same standard, there is also advice on distance when using a consolidation point. It advises a minimum distance of 5 m between the CP and TO. In ISO/IEC they are a little more clearer is specifying 15 m between the DP and CP. This is all for Category 6/Class E.

With regards to Category 6A, there is a minimum length requirement – kind of. In Annex J of ANSI/TIA-568-B.2-10 is describes worst case modeling using a 10 m link. The suggestion therefore is that you should not go less than 10 m. But again, that is with minimally compliant components. As with Category 6 stated above, there are now components available that will give you passing field tests below 10 m. HOWEVER, even vendors with good components may still have a minimum length requirement in their design specifications. The only way to know where you stand is to talk to the vendor AND test it to see.

If you are talking specifically about patch cords, then 0.5 m is the implied minimum length in ANSI/TIA/EIA-568-B.2-1 for a certified patch cord. That’s because the math for the limit lines really does not work below this. Infact, getting a certified patch cord of 0.5 is going to be tricky. Many vendors only offer a certified patch cord of 1.0 m or longer. I suspect that this may be the most useful information with regards to your question.

Kind regards

Adrian Young
Sr. Customer Support Engineer

Fluke Networks Technical Assistance Center
6920 Seaway Blvd, Everett, WA 98203
Toll Free 1 800 283 5853
International + 1 425 446 4519

Are you current with your software?

– DTX Version 2.12
– LinkWare Version 5.0 (New NOV 08)
– AxTalk Analyzer Version 3.0
– OptiFiber Version 2.2.1
– CableIQ Reporter 1.31
– CableIQ Version 1.3
– DSP Version x.925

Kind regards

Adrian Young
Senior Technical Support Engineer
Fluke Networks Technical Assistance Center


Copper Structured Cabling

Some of the most obvious advantages copper offers is that it’s less expensive than fiber cable and much easier to terminate in the field. Because copper structured cabling is the most commonly installed cable, there is a vast selection of connecting hardware and networking devices, which are also less expensive than fiber equipment.

Unshielded twisted pair (UTP).
UTP. This is the most widely used cable. Known as balanced twisted pair, UTP consists of twisted pairs (usually four) in a PVC or plenum jacket. When installing UTP cable, make sure you use trained technicians. Field terminations, bend radius, pulling tension, and cinching can all loosen pair twists and degrade performance. Also take note of any sources of EMI. Choose UTP for electrically quiet environments.

Shielded twisted pair (STP, F/UTP, S/FTP, ScTP, S/STP).
Use shielded cable to extend distances and to minimize EMI. Sources of EMI, commonly referred to as noise, include elevator motors, fluorescent lights, generators, air conditioners, and printers, etc. In 10-GbE, shielded cable can also reduce ANEXT. Shielded cable can be less balanced than UTP cable because of the shield. The metal sheaths in
the cable need to be grounded to cancel the effect of EMI on the conductors. Shielded cable is also more expensive, less flexible, and can be more difficult to install than UTP cable. Most shielded cable is thicker than UTP, so it fills conduits quicker. Keep that in mind as you plan your cable pathways. STP. This is twisted pair cabling with a shield. There are two common shields: foil sheaths and copper braids. Foil gives a 100% shield while a copper braid
provides 85% to 95% coverage because of the holes in the braid. But, a braided shield offers better overall protection because it’s denser than foil and absorbs more EMI. A braided shield also performs better at lower frequencies. Foil, being thinner, rejects less interference, but provides better protection over a wider range of frequencies. For these reasons, combination foil and braid shields are sometimes used for the best protection. Shields can surround all
the twisted pairs and/or the individual twisted pairs.Foiled/Unshielded Twisted Pair (F/UTP). Foil is the
most basic cable shield. Cables with an overall foil shield surrounding all the pairs are called F/UTP. These may also be called FTP cables. Shielded Foiled Twisted Pair (S/FTP). This cable features individual foil-shielded pairs and an outer shield, which can be braided or foil. It offers the best protection from external noise and ANEXT. This cable
was traditionally called Screened Twisted Pair (ScTP). You may also see it listed as S/STP.

Solid vs. stranded conductors.
Copper cable conductors can be solid or stranded, whether the cable is shielded or unshielded. Solid-conductor. This cable is designed for both backbone and horizontal cable runs. Use it for runs between equipment rooms or from the telecommunications room to the wallplate. Solid cable shouldn’t be bent, flexed, or twisted. Its attenuation is lower than that of stranded-conductor cable. Stranded-conductor. This cable is used primarily as a patch cable between the outlet and desktop and between patching equipment. Stranded-conductor cable is more flexible than solid-core cable. However, attenuation is higher, so the total length of a stranded cable in your channel should be kept to
10 meters or less to reduce signal degradation.

PVC vs. plenum.
PVC cable features an outer polyvinyl chloride jacket that gives off toxic fumes when it burns. It’s most commonly used between the wallplate and workstation. It can be used for horizontal and vertical runs, but only if the building features a contained ventilation system. Plenum cable has a special coating, such as Teflon® FEP, which doesn’t emit toxic fumes when it burns. A plenum is a space within the building designed for the movement of environmental air. In most office buildings, the space above the ceiling is used for the HVAC air return. If cable goes through that space, it must be “plenum-rated.” LS0H (Low Smoke, Zero Halogen) is a type of plenum cable with a thermoplastic compound that reduces the amount of toxic and corrosive gases emitted during combustion.

Screenshot_5 Screenshot_1 Screenshot_2 Screenshot_3 Screenshot_4

Copper Cabling Review

Those of you who have been following my blog know that I love to write about what I classify as the soft sciences. By that I mean protocols, call flows, software, security, and other technologies that are for the most part, hardware and infrastructure independent. Does it make much difference if I run a SIP stack on a PC, virtual server, or smart phone? Not really. SIP acts like SIP no matter what platform is sending or receiving it.

So, it may come as a surprise that today I am writing about something that has little to do with source code or security certificates. I want to espouse on Ethernet cables.

Honestly, I didn’t give cabling a lot of thought until last week when I was speaking at an Avaya Users’ Group meeting in Tampa, Florida. After the president discussed old and new business, he opened the floor to the members to ask questions of their fellow Avaya users.

The questions were good. I took notes on several and chimed in where I felt I had something to add. However, the one that I found most interesting was this, “We are in the process of redoing our building’s LAN cables and I was wondering if people are installing Cat-5 or Cat-6.”

The answers varied quite a bit. Some folks already made the switch, a few decided not to, and some fell into the not-sure-what-we-will-do category.

For those of you who don’t have a plan (and I will assume that many of you are in that camp), allow me to spend some time introducing you to the Cat-5, Cat-5e, Cat-6, and Cat-6a Ethernet cables.

But first, this handy-dandy comparison table.


Length (meters) 10 Mb/s 100 Mb/s 1 Gb/s 10 Gb/s Power Over Ethernet Frequency in Mhz
Cat-5 100  Yes  Yes  Yes 100
Cat-5e 100  Yes  Yes  Yes  Yes 100
Cat-6 100 (55m for 10Gb/s)  Yes  Yes  Yes  Yes  Yes 250
Cat-6a 100  Yes  Yes  Yes  Yes  Yes 500


The Differences

As the class of cable goes up, so does the speed and frequency of the wire. The biggest difference between Cat-5/5e and Cat-6/6a is the speed. Cat-5/5e tops out at 1 Gb/s and Cat-6/6a allows speeds up to 10 Gb/s.

The difference between Cat-6 and Cat-6a is that Cat-6 is only guaranteed for a distance of 55 meters at 10 Gb/s. Cat-6a can run at that same speed for up to 100 meters.

Physically, Cat-5/5e and Cat-6/6a differ in a number of ways. First, there are more twists per centimeter of wire in Cat-6/6a. Cat-5 and Cat-5e typically uses 1.5 to 2 twists per centimeter and Cat-6 and Cat-6a uses 2+ twists per centimeter. Twisting reduces interference between internal and external wires.

Second, Cat-6/6a use a thicker outside sheath than Cat-5/5e. This sheath protects against near end and alien crosstalk. Crosstalk is more likely as the frequency (Mhz) increases. Cat-6 and Cat-6a support higher frequency ranges so they have the thickest sheaths.

Lastly, a nylon spline (a longitudinal separator in the wiring) can also be used to reduce crosstalk. Cat-5e always has a spline, Cat-5 sometimes has a spline, and depending upon the manufacturer, Cat-6/6a may also have a spline. Since Cat-5e requires a spline and Cat-5 does not, Cat-5 has a thicker outside sheath than Cat-5e.

Cost-wise, Cat-6 and Cat-6a are about 10 to 20 percent more expensive than Cat-5/5e. So, cost is not a big issue considering the fact that you can obtain speeds ten times faster when you go to Cat-6/6a.

It’s important to know that Cat-6 and Cat-6a are backwards compatible and can be used with older Cat-5, Cat-5e, and even Cat-3 equipment.

Should You or Shouldn’t You?

If it were me, every new installation would use Cat-6a wiring. Running cable through a building is an expensive proposition and since most cable will stay in place for up to 10 years, I would future-proof my company by adding the fastest option available whether I was ready to rollout 10 Gb/s or not.  Running cable twice in a short amount of time would be very foolish

However, I would not pull out perfectly good Cat-5e cable if I wasn’t ready to move to a higher speed. Wait until you need it before spending the money. Besides, by that time, there may be something even better that you can run.

Mischief Managed

This is an important topic that may not jump out at you as you look at upgrading your network switches and routers. However, as you saw, cable choice can make the difference between lightening fast and yesterday’s speeds.

Notice that I didn’t mention Cat-7 cables. For some folks, Cat-6a is ancient history. However, that wasn’t the original question and I need to leave myself something for a future blog article. Stay tuned.

first article from andrew

TIA/EIA Structured Cabling Standards

Key cabling infrastructure standards









iec thumb


ansi logo


free vector csa logo 091898 CSA logo




The TIA/EIA structured cabling standards define how to design, build, and manage a cabling system that is structured, meaning that the system is designed in blocks that have very specific performance characteristics. The blocks are integrated in a hierarchical manner to create a unified communication system. For example, workgroup LANs represent a block with lower-performance requirements than the backbone network block, which requires high-performance fiber-optic cable in most cases. The standard defines the use of fiber-optic cable (single and multimode), STP (shielded twisted pair) cable, and UTP (unshielded twisted pair) cable.

The initial TIA/EIA 568 document was followed by several updates and addendums as outlined below. A major standard update was released in 2000 that incorporates previous changes.

TIA/EIA-568-A-1995 (Commercial Building Telecommunications Wiring Standards)    Defines a standard for building cable system for commercial buildings that support data networks, voice, and video. It also defines the technical and performance criteria for cabling.

TIA/EIA-568-A updates (1998-1999)    The TIA/EIA-568 was updated several times through this time period. Update A1 outlined propagation delay and delay skew parameters. Update A2 specified miscellaneous changes. Update A3 specified requirements for bundled and hybrid cables. Update A4 defined NEXT and return loss requirements for patch cables. Finally, update A5 defined performance requirements for Enhanced Category 5 (Category 5E).

TIA 568-B.1-2000 (Commercial Building Telecommunications Wiring Standard)    The year 2000 update packages all the previous addendums and service updates into a new release and, most important, specifies that Category 5E cable is the preferred cable type that can provide minimum acceptable performance levels. Several addendums were also released that specify technical information for 100-ohm twisted-pair cable, shielded twisted-pair cable, and optical fiber cable.

TIA/EIA-569-A-1995 (Commercial Building Standard for Telecommunications Pathways and Spaces)    This standard defines how to build the pathways and spaces for telecommunication media.

TIA 570-A-1998 (Residential and Light Commercial Telecommunications Wiring Standard)    This standard specifies residential cabling.

TIA/EIA-606-1994 (Building Infrastructure Administration Standard)    This standard defines the design guidelines for managing a telecommunications infrastructure.

TIA/EIA-607-1995 (Grounding and Bonding Requirements)    This standard defines grounding and bonding requirements for telecommunications cabling and equipment.

The current trend is to evolve the standards to support high-speed networking such as Gigabit Ethernet and define advanced cable types and connectors such as four-pair Category 6 and Category 7 cable. Category 6 is rated for channel performance up to 200 MHz, while Category 7 is rated up to 600 MHz.

Why you need to get Structured Cabling Contractor?

The market now are very competitive even in this structured cabling market, I believe every one can pull and install the cable but are they install in the correct manner?

Electrical contractors that do install structured cabling without a solid knowledge of the process may be putting both the home’s network and their own professional reputation at risk. However, refusing to take part in the structured cabling market may not be the best move for an electrical contractor either.

There are some important differences between pulling electrical wires and pulling structured cabling that electrical contractors need to be aware of to provide quality work and earn a good reputation in this growing field. One of the biggest differences between electrical wiring and structured cabling is the fragility of the latter. “In the installation of structured cabling, you can easily destroy the performance of the cables if they’re not handled right.”

For example, the maximum pulling tension for low-voltage cable is much less than that used for electrical cables. Each manufacturer has its own standard, but less than 25 pounds is typically recommended. What will happen if more force is used? “One improper tug at a wire, and you can pull out the twist that is so carefully put in by the manufacturer, degrading performance.

It is also important to note that the low-voltage cable, such as fiber optic cable, cannot bend at a 90 angle, so it must form a loop in order to turn in a different direction. The radius of this loop also depends on manufacturer specifications. If there is too sharp of a bend in the cabling, some of the cable fibers could break or kink and also degrade the signal.

You must install low-voltage cables at least 12 inches away from electrical wires, and run them parallel to one another. They must not be closer than this for more than 6 feet. If electrical wires and low-voltage cables cross, they must do so at a 90° angle.

Keeping up with the competition

Though many builders seem willing to give their structured cabling work to electrical contractors, some are still not sure they will perform at the level of electronic systems contractors, alarm system installers, and even home entertainment installers — all specifically trained in low-voltage installations.

“I think the electrical contractors have a ways to go to prove that they know what they’re doing in this area [structured cabling]”, “Their background and experience is on the electrical side, which is totally different than on the communications side.”

Data Center Physical Infrastructure (Enterprise Networks)

Data Center Infrastructure Structured Cabling

Data Center Infrastructure Structured Cabling – Facilities

When designing a data center, several factors should be taken into consideration, including standards compliance.  When implementing a structured cabling solution, the standard recommends a star topology architecture to achieve maximum network flexibility.  TIA-942 outlines additional factors crucial to data center design, including recognized media, cable types, recommended distances, pathway and space considerations and redundancy. In addition to standards compliance, the need for infrastructure flexibility to accommodate future moves, adds and changes due to growth, new applications, data rates and technology advancements in system equipment must be considered.

Data Center Needs

As data centers face the continued need to expand and grow, the fundamental concerns are constant. Data center infrastructures must provide reliability, flexibility and scalability in order to meet the ever-changing data center network.

Reliability: Data center cabling infrastructures must provide security and enable 24 x 365 x 7 uptime. Tier 4 data centers have uptime requirements of 99.995 percent, less than one-half hour per year.

Flexibility: With the constant in data centers being change, the cabling infrastructure must be modular to accommodate changing requirements and easy to manage and adjust for minimal downtime during moves, adds and changes.

Scalability: Cabling infrastructures must support data center growth, both in addition of system electronics and increasing data rates to accommodate the need for more bandwidth. The infrastructure must be able to support existing serial duplex transmission and provide a clear migration path to future parallel optic transmission. In general, the infrastructure should be designed to meet the challenges of the data center over a 15- to 20-year service life.

TIA-942 includes four tiers relating to various levels of redundancy (Annex G)

Tier I – No Redundancy – 99.671% available

Tier II – Redundant component, but 1 path – 99.741% available

Tier III – Multiple paths, components, but 1 active path – 99.982% available

Tier IV – Multiple paths, components, all active – 99.995% available – < 1/2 hour downtime/year

Low Smoke Zero Halogen Cable (LSZH)

What are Halogens?
When grouped together, the elements fluorine, chlorine, bromine, iodine and astatine make up a chemical family known as the Halogens. You may not have been aware of it, but halogens have many uses, and most of us come into contact with them on a daily basis. Just think about it: the fluoride in your toothpaste, the chlorine in your pool, the iodine in your medicine cabinet…they’re all halogens!


Halogens as Flame Retardants
Pool maintenance, first aid and dental hygiene aside, halogens are also widely used as flame retardants in a variety of plastics, including the PVC (polyvinyl chloride) that makes up many cable jackets and electronics-related products. Unfortunately, when it comes to the health of both humans and the environment, halogen-based flame retardants can be a double-edged sword.
Ironically, while these halogen compounds keep plastics from catching fire and spreading flames, they can also release hazardous gases if the plastic actually ignites. Carcinogenic substances like Polychlorinated Biphenyls (PCBs), Polycyclic Aromatic Hydrocarbons (PAHs), Nitro Polycyclic Aromatic Hydrocarbons and dioxins are all by-products produced when halogenated plastics burn. These gaseous compounds pose a double threat…not only are they dangerous in vapor form, but they can also condense into caustic acids (such as hydrochloric acid) when they come into contact with water.


Low Smoke Zero Halogen Materials: a Safer Alternative
It’s all in the name… “Low Smoke Zero Halogen” sums everything up: these materials (such as polypropylene) contain absolutely no halogens, but still have excellent flame resistance and produce very little smoke when burned.
LSZH cabling is the safest choice for plenum use and any other applications in which smoke is likely to both build up and come into contact with people, since no harmful toxins are actually released.

TycoElectronics LSZH Cables

LSZH Structured Cabling

The Hidden Hero Structured Cabling System

Cabling is one of the most important elements within any IT network and is one of the biggest IT investments that companies make. Selecting the right cabling system can have a tangible impact on a range of issues, including network performance, the speed at which data can pass through the network. Therefore, making the right choice of cabling system is too important an issue to be ignored.

Understandably, since cabling is an occasional rather than a regular purchase, most IT managers cannot be expected to be experts in this area, but this does mean that they often need to rely on advice from contractors, consultants, installers and suppliers. This can be dangerous, depending on the quality of the information being distributed. Poor-quality or inadequate cabling systems can bring a network to a standstill.

There have even been occasions where it has been necessary to rip out large sections of structured cabling, due to faults that need to be located and repaired, costing the companies involved vast amounts of money, as well as lost time. These faults may not be immediately obvious, potentially causing the user company considerable disruption at a later date.

The good news is that with a basic understanding of the cabling market and installation issues, IT managers can make more informed choices. The first question is: structured or not? Direct cabling is cheaper, but it is essentially a blind network, without any means to manage or configure it easily. This is particularly important when changes need to be made, for instance switching around connections to end-users, should there be a reorganisation in an office.

When correctly labelled, the patch panel of a structured cabling system makes it easy to see at a glance every connection, so changes can be quickly and easily made, usually without requiring a specialist visit from a third party. Moreover, efficient installation means that any potential EMI or crosstalk options can be minimised, for instance by ensuring specified distances between cables, minimising bend radius and using techniques, such as dual-pathing with diverse routing of cables. Given how often most companies will need to make changes to their cabling systems, however small, structured cabling is these days the sensible option.